项目名称: 以AAV病毒衣壳为模板的金属纳米材料的制备及亚硝酸根离子电化学传感器研究

项目编号: No.21307034

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 环境科学、安全科学

项目作者: 庄贞静

作者单位: 华侨大学

项目金额: 25万元

中文摘要: 亚硝酸根离子是致癌物质亚硝胺的重要前体物质之一,因此对环境中亚硝酸根离子的检测具有非常重要的临床意义。金属纳米材料可显著提高电化学传感器对亚硝酸根离子的响应性能。纳米材料的电化学催化性能与其组成、尺寸和形貌息息相关,然而无论用物理法或化学法制备金属纳米材料,均无法对所制备的金属纳米材料的尺寸、组成和形貌进行精确调控且易团聚,因此将该些纳米材料用于电化学传感器研制时,将影响到传感器的重现性和灵敏度。病毒具有明确的尺寸、形状及化学结构,可看作是种经过精确定义的生物纳米模板。本项目拟基于本单位多年在腺相关病毒(AAV)研究领域的基础,将经过改造的AAV病毒衣壳固定在电极表面上,以AAV病毒衣壳为生物纳米模板制备尺寸、组成和形貌精确可控的金属纳米材料。该方法可精确可控地制备金属纳米材料,且有效地避免了纳米材料的团聚,有望对亚硝酸根离子实现高灵敏检测。

中文关键词: 腺相关病毒;纳米材料;碳量子点;电化学传感器;亚硝酸根

英文摘要: Nitrite as a precursor to carcinogenic nitrosamines is important within environmental and physiological systems. Nanomaterials with special physical and chemical properties have been widely applied in electrochemical chemosensors.Nitrite sensors modified with metallic nanomaterials show good performances through increasing the surface area and enhancing the mass transport and catalysis. The performances of metallic nanoparticles in chemosensors greatly depend on their size, morphology, and composition. However, it is hard to control the size, morphology and composition of nanomaterial by chemical or physical methods. Furthermore, nanomaterials tend to form aggregates and hence their characteristics as nanomaterials cannot be employed. Biological methods have provided new routes for preparation of nanomaterials. A key characteristic of materials synthesized by natural biological systems is the hierarchical organization of structures on many length scales with controlled size, shape, alignment, and orientation. Because of their size, shape, and well-defined chemical structures, viruses have been used as templates for controlled synthesis of nanomaterials. Adeno-associated virus (AAV) particles are 20-22 nm-diameter icosahedral.The physical, biological, and genetic properties of AAV have been well characterized. Th

英文关键词: Adeno-associated virus;nanomaterrials;carbon dots;electrochemical sensor;nitrite

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
37+阅读 · 2021年4月23日
专知会员服务
22+阅读 · 2021年3月9日
小目标检测技术研究综述
专知会员服务
122+阅读 · 2020年12月7日
基于Keras进行迁移学习
论智
12+阅读 · 2018年5月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月18日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
37+阅读 · 2021年4月23日
专知会员服务
22+阅读 · 2021年3月9日
小目标检测技术研究综述
专知会员服务
122+阅读 · 2020年12月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员