The design of effective online caching policies is an increasingly important problem for content distribution networks, online social networks and edge computing services, among other areas. This paper proposes a new algorithmic toolbox for tackling this problem through the lens of \emph{optimistic} online learning. We build upon the Follow-the-Regularized-Leader (FTRL) framework, which is developed further here to include predictions for the file requests, and we design online caching algorithms for bipartite networks with pre-reserved or dynamic storage subject to time-average budget constraints. The predictions are provided by a content recommendation system that influences the users viewing activity and hence can naturally reduce the caching network's uncertainty about future requests. We also extend the framework to learn and utilize the best request predictor in cases where many are available. We prove that the proposed {optimistic} learning caching policies can achieve \emph{sub-zero} performance loss (regret) for perfect predictions, and maintain the sub-linear regret bound $O(\sqrt T)$, which is the best achievable bound for policies that do not use predictions, even for arbitrary-bad predictions. The performance of the proposed algorithms is evaluated with detailed trace-driven numerical tests.
翻译:有效的在线缓冲政策的设计对于内容分发网络、在线社交网络和边际计算服务等领域来说是一个日益重要的问题。 本文提出一个新的算法工具箱, 以便通过在线学习的镜头来解决这个问题。 我们还在“ 跟踪(Regulalized-Leader) ” (FTRL) 框架的基础上更进一步, 以包括文件请求的预测, 我们为有预留或动态存储的双面网络设计在线缓冲算法, 但须受预算平均限制。 预测由内容建议系统提供, 影响用户观看活动, 从而自然减少缓冲网络对未来请求的不确定性。 我们还扩展了框架, 以学习和利用可供许多人使用的最佳请求预测器。 我们证明, 拟议的{ 优化( opististy) 学习政策可以实现\ emph{ sub- ob- ze o} 业绩损失( regret), 并保持亚线下受 $O\ qrt T$的遗憾约束的子建议 系统提供。 对于任意的预测来说, 以可实现的量化的量化的量化的量化政策是最佳的。