Using the 20 questions estimation framework with query-dependent noise, we study non-adaptive search strategies for a moving target over the unit cube with unknown initial location and velocities under a piecewise constant velocity model. In this search problem, there is an oracle who knows the instantaneous location of the target at any time. Our task is to query the oracle as few times as possible to accurately estimate the location of the target at any specified time. We first study the case where the oracle's answer to each query is corrupted by discrete noise and then generalize our results to the case of additive white Gaussian noise. In our formulation, the performance criterion is the resolution, which is defined as the maximal $L_\infty$ distance between the true locations and estimated locations. We characterize the minimal resolution of an optimal non-adaptive query procedure with a finite number of queries by deriving non-asymptotic and asymptotic bounds. Our bounds are tight in the first-order asymptotic sense when the number of queries satisfies a certain condition and our bounds are tight in the stronger second-order asymptotic sense when the target moves with a constant velocity. To prove our results, we relate the current problem to channel coding, borrow ideas from finite blocklength information theory and construct bounds on the number of possible quantized target trajectories.
翻译:使用基于查询的噪音的20个问题估计框架,我们研究一个非适应性搜索策略,以在初始位置和速度均不为人知的方块上移动目标,其初始位置和速度在一块小巧的恒定速度模型下是未知的。在这个搜索问题中,有一个神器随时知道目标的瞬间位置。我们的任务是尽可能多地查询神器,以便准确估计目标位置,在任何特定的时间进行精确的查询。我们首先研究一个“神器”对每个查询的答案因离散噪音而腐蚀,然后将我们的结果推广到添加的白色高斯噪音的情况。在我们的设计中,性能标准是分辨率,它的定义是真实地点和估计地点之间的最大距离 $ ⁇ infty 。我们把一个最佳的不适应性查询程序的最起码的解析度,在任何特定时间准确估计目标位置的位置。我们首先研究的是,当查询的数量满足了某种特定条件,而我们的约束性地,我们的目标在最紧紧的条框度上,当我们的目标在最紧的条框度上,在最紧的轨道上,在最紧的顺序上,在最紧的顺序上,我们的目标方向上,要的顺序上,将我们的目标与最紧的顺序与最紧的阶定的顺序与最紧的顺序上, 与最紧的顺序与最紧的阶定的顺序是,与最紧的顺序与最紧的顺序是, 的根根根根根根根根根根根根根根根根与我们。