We develop a fast and scalable method for computing Reduced-order Nonlinear Solutions (RONS). RONS is a recently proposed framework for reduced-order modeling of time-dependent partial differential equations (PDEs), where the reduced model depends nonlinearly on a set of time-varying parameters. RONS obtains an explicit set of ordinary differential equations (ODEs) for the parameters, which optimally evolve the shape of the approximate solution. However, a naive construction of these ODEs requires the evaluation of $\mathcal O(n^2)$ integrals, where $n$ is the number of model parameters. For high-dimensional models, the resulting computational cost becomes prohibitive. Here, exploiting the structure of the RONS equations and using symbolic computing, we develop an efficient computational method which requires only $\mathcal O(K^2)$ integral evaluations, where $K\ll n$ is an integer independent of $n$. Our method drastically reduces the computational cost and allows for the development of highly accurate spectral methods where the modes evolve to adapt to the solution of the PDE, in contrast to existing spectral methods where the modes are static in time.
翻译:我们开发了一种快速且可扩缩的计算降低顺序非线性溶液的方法。RONS是最近提议的关于时间依赖部分偏差方程(PDEs)的减序建模框架,根据这一框架,降低的模型不线性地依赖一套时间变化参数。RONS为参数获得一套明确的普通差分方程(ODEs),这种公式最理想地演变了近似溶液的形状。然而,这些O(n%2)的天真的构建要求评估$mathcal O(n%2)美元的组成部分,其中美元是模型参数的数量。对于高维模型,由此产生的计算成本变得难以承受。在这里,我们利用RONS方程的结构并利用象征性计算,开发一种有效的计算方法,只需要$\macal O(K%2)$的综合评价,其中$K\ll n美元是整数不以美元为单位的整数。我们的方法极大地降低了计算成本,并允许开发高度精确的光谱方法,在这些方法中,模式在适应PDE的解决方案时,相对于现有光谱系方法。