Multiscale and multiphysics problems need novel numerical methods in order for them to be solved correctly and predictively. To that end, we develop a wavelet based technique to solve a coupled system of nonlinear partial differential equations (PDEs) while resolving features on a wide range of spatial and temporal scales. The algorithm exploits the multiresolution nature of wavelet basis functions to solve initial-boundary value problems on finite domains with a sparse multiresolution spatial discretization. By leveraging wavelet theory and embedding a predictor-corrector procedure within the time advancement loop, we dynamically adapt the computational grid and maintain accuracy of the solutions of the PDEs as they evolve. Consequently, our method provides high fidelity simulations with significant data compression. We present verification of the algorithm and demonstrate its capabilities by modeling high-strain rate damage nucleation and propagation in nonlinear solids using a novel Eulerian-Lagrangian continuum framework.
翻译:多尺度和多物理问题需要新颖的数字方法才能正确和预测地解决这些问题。 为此,我们开发了一种基于波盘的技术,以解决非线性部分方程式(PDEs)的组合系统,同时在广泛的空间和时间尺度上解决特征。算法利用波盘基础功能的多分辨率性质,以稀疏多分辨率多空间离散的方式解决有限域的初始-边界值问题。通过利用波盘理论和在时间推进周期内嵌入预测者-纠正程序,我们动态地调整计算网格,并随着PDEs的演变保持其解决方案的准确性。因此,我们的方法提供了高度忠诚的模拟,并提供了重要的数据压缩。我们用一个新型的 Eulerian-Lagrangaian 连续框架对算法进行验证,并展示其能力,在非线性固体中建模高波速损害核分离和传播模型。