Computational models have become a powerful tool in the quantitative sciences to understand the behaviour of complex systems that evolve in time. However, they often contain a potentially large number of free parameters whose values cannot be obtained from theory but need to be inferred from data. This is especially the case for models in the social sciences, economics, or computational epidemiology. Yet many current parameter estimation methods are mathematically involved and computationally slow to run. In this paper we present a computationally simple and fast method to retrieve accurate probability densities for model parameters using neural differential equations. We present a pipeline comprising multi-agent models acting as forward solvers for systems of ordinary or stochastic differential equations, and a neural network to then extract parameters from the data generated by the model. The two combined create a powerful tool that can quickly estimate densities on model parameters, even for very large systems. We demonstrate the method on synthetic time series data of the SIR model of the spread of infection, and perform an in-depth analysis of the Harris-Wilson model of economic activity on a network, representing a non-convex problem. For the latter, we apply our method both to synthetic data and to data of economic activity across Greater London. We find that our method calibrates the model orders of magnitude more accurately than a previous study of the same dataset using classical techniques, while running between 195 and 390 times faster.
翻译:在定量科学中,计算模型已成为一个强大的工具,可以理解随着时间的推移演变而来的复杂系统的行为,然而,这些模型往往含有潜在的大量自由参数,其价值无法从理论中获得,但需要从数据中推断。对于社会科学、经济学或计算流行病学的模型来说尤其如此。但许多当前参数估算方法在数学上涉及许多参数,计算速度缓慢。在本文中,我们提出了一个简单快捷的计算方法,用以利用神经差异方程式获取模型参数的准确概率密度。我们提出了一个管道,由多种试剂模型组成,作为普通或随机差异方程式系统的前沿解析器,以及一个神经网络,以便从模型产生的数据中提取参数。这两个组合创造了一个强大的工具,可以快速估计模型参数的密度,即使是非常大的系统也是如此。我们展示了SIR感染传播模型合成时间序列数据的方法,并对Harris-Wilson经济活动模型在网络上进行深入分析,代表一个非Convex差异方程式问题,以及一个神经网络的前沿解算器网络,然后从模型中提取参数。对于模型生成的参数来说,我们运用了一种更精确的合成数据的方法,我们用同样的方法,用以前的数据来进行精确地研究。