Prior works on Information Extraction (IE) typically predict different tasks and instances (e.g., event triggers, entities, roles, relations) independently, while neglecting their interactions and leading to model inefficiency. In this work, we introduce a joint IE framework, HighIE, that learns and predicts multiple IE tasks by integrating high-order cross-task and cross-instance dependencies. Specifically, we design two categories of high-order factors: homogeneous factors and heterogeneous factors. Then, these factors are utilized to jointly predict labels of all instances. To address the intractability problem of exact high-order inference, we incorporate a high-order neural decoder that is unfolded from a mean-field variational inference method. The experimental results show that our approach achieves consistent improvements on three IE tasks compared with our baseline and prior work.
翻译:信息提取(IE)先前的工作通常独立地预测不同的任务和实例(例如事件触发、实体、角色、关系),同时忽视其相互作用,导致模式效率低下。在这项工作中,我们引入了一个联合 IE 框架(HighIE),通过整合高排序跨任务和跨企业依赖性来学习和预测多种 IE 任务。具体地说,我们设计了两类高阶因素:同质因素和差异因素。然后,这些因素被用来联合预测所有情况的标签。为了解决精确高顺序推论的易感性问题,我们采用了一种从平均场变异推论法中演化的高阶神经分解码器。实验结果表明,我们的方法与我们的基准和先前的工作相比,在三项IE任务上取得了一致的改进。