We define a model for random (abstract) cell complexes (CCs), similiar to the well-known Erd\H{o}s-R\'enyi model for graphs and its extensions for simplicial complexes. To build a random cell complex, we first draw from an Erd\H{o}s-R\'enyi graph, and consecutively augment the graph with cells for each dimension with a specified probability. As the number of possible cells increases combinatorially -- e.g., 2-cells can be represented as cycles, or permutations -- we derive an approximate sampling algorithm for this model limited to two-dimensional abstract cell complexes. Since there is a large variance in the number of simple cycles on graphs drawn from the same configuration of ER, we also provide an efficient method to approximate that number, which is of independent interest. Moreover, it enables us to specify the expected number of 2-cells of each boundary length we want to sample. We provide some initial analysis into the properties of random CCs drawn from this model. We further showcase practical applications for our random CCs as null models, and in the context of (random) liftings of graphs to cell complexes. Both the sampling and cycle count estimation algorithms are available in the package `py-raccoon` on the Python Packaging Index.
翻译:暂无翻译