Graph Neural Networks (GNNs) have achieved remarkable performance in modeling graphs for various applications. However, most existing GNNs assume the graphs exhibit strong homophily in node labels, i.e., nodes with similar labels are connected in the graphs. They fail to generalize to heterophilic graphs where linked nodes may have dissimilar labels and attributes. Therefore, in this paper, we investigate a novel framework that performs well on graphs with either homophily or heterophily. More specifically, to address the challenge brought by the heterophily in graphs, we propose a label-wise message passing mechanism. In label-wise message-passing, neighbors with similar pseudo labels will be aggregated together, which will avoid the negative effects caused by aggregating dissimilar node representations. We further propose a bi-level optimization method to automatically select the model for graphs with homophily/heterophily. Extensive experiments demonstrate the effectiveness of our proposed framework for node classification on both homophilic and heterophilic graphs.
翻译:神经网图(GNNs)在各种应用的模型图中取得了显著的性能。然而,大多数现有的GNNs认为图表在节点标签中表现出强烈的同质性,即具有类似标签的节点在图形中连接。它们没有概括到相链接的节点可能有不同标签和属性的异性嗜血性图。因此,在本文中,我们调查了一个新的框架,这个框架在图表中以同质或杂乱的方式很好地运行。更具体地说,为了应对图中杂乱的图引起的挑战,我们提出了一个标签错误信息传递机制。在标签-信息传递过程中,具有类似标签标签的邻居将会被聚合在一起,这样可以避免由相近的无偏差表达方式造成的负面效应。我们进一步提出一个双级优化方法,以便自动选择以同质/偏重方式绘制的图表的模型。广泛的实验表明,我们提议的对同质和异性哲学图表进行节点分类的框架是有效的。