Sampling-based algorithms, such as Rapidly Exploring Random Trees (RRT) and its variants, have been used extensively for motion planning. Control barrier functions (CBFs) have been recently proposed to synthesize controllers for safety-critical systems. In this paper, we combine the effectiveness of RRT-based algorithms with the safety guarantees provided by CBFs in a method called CBF-RRT$^\ast$. CBFs are used for local trajectory planning for RRT$^\ast$, avoiding explicit collision checking of the extended paths. We prove that CBF-RRT$^\ast$ preserves the probabilistic completeness of RRT$^\ast$. Furthermore, in order to improve the sampling efficiency of the algorithm, we equip the algorithm with an adaptive sampling procedure, which is based on the cross-entropy method (CEM) for importance sampling (IS). The procedure exploits the tree of samples to focus the sampling in promising regions of the configuration space. We demonstrate the efficacy of the proposed algorithms through simulation examples.
翻译:以抽样为基础的算法,如快速探索随机树(RRT)及其变式,已广泛用于运动规划;最近提议将控制屏障功能(CBFs)合成安全临界系统控制器;在本文件中,我们将基于RRT的算法的效力与CBFs以称为CBF-RRT$+ast美元的方法提供的安全保障结合起来; CBFs用于当地RRT$+Zast$的轨道规划,避免对扩展路径进行明确的碰撞检查;我们证明CBF-RRT$+Zast$保持了RRT$+Ast$的概率完整性;此外,为了提高算法的取样效率,我们为该算法配备了一种适应性取样程序,该程序以跨种方法为基础,用于重要取样;利用采样树将采样集中在配置空间的有希望的区域;我们通过模拟实例展示拟议算法的功效。