This paper introduces a novel motion planner, incrementally stochastic and accelerated gradient information mixed optimization (iSAGO), for robotic manipulators in a narrow workspace. Primarily, we propose the overall scheme of iSAGO informed by the mixed momenta for an efficient constrained optimization based on the penalty method. In the stochastic part, we generate the adaptive stochastic momenta via the random selection of sub-functionals based on the adaptive momentum (Adam) method to solve the body-obstacle stuck case. Due to the slow convergence of the stochastic part, we integrate the accelerated gradient descent (AGD) to improve the planning efficiency. Moreover, we adopt the Bayesian tree inference (BTI) to transform the whole trajectory optimization (SAGO) into an incremental sub-trajectory optimization (iSAGO), which improves the computation efficiency and success rate further. Finally, we tune the key parameters and benchmark iSAGO against the other 5 planners on LBR-iiwa in a bookshelf and AUBO-i5 on a storage shelf. The result shows the highest success rate and moderate solving efficiency of iSAGO.
翻译:本文介绍一个新的运动规划器,在狭小工作空间内对机器人操纵者采用渐进式和加速梯度信息混合优化(iSAGO),主要提出以混合时间为根据,根据罚款方法,高效限制优化,以混合时间为参考的iSAGO总体计划;在随机选择适应性随机性随机性随机性随机性随机性分功能,根据适应性动力(Adam)解决身体障碍悬案的方法,生成适应性随机性随机性随机性静态状态。由于随机性部分的缓慢融合,我们整合加速梯度下降(AGD)以提高规划效率。此外,我们采用Bayesian树推断法(BTI)将整个轨迹优化(SAGO)转化为递增性次级优化(iSAGO),进一步提高计算效率和成功率。最后,我们将关键参数和基准iSAGGO与其他5规划器在书架上的LBR-iewa和AUBO-i5上调整。结果显示最高成功率和适度解决ISASAASAAVA的效率。