We introduce data structures for solving robust regression through stochastic gradient descent (SGD) by sampling gradients with probability proportional to their norm, i.e., importance sampling. Although SGD is widely used for large scale machine learning, it is well-known for possibly experiencing slow convergence rates due to the high variance from uniform sampling. On the other hand, importance sampling can significantly decrease the variance but is usually difficult to implement because computing the sampling probabilities requires additional passes over the data, in which case standard gradient descent (GD) could be used instead. In this paper, we introduce an algorithm that approximately samples $T$ gradients of dimension $d$ from nearly the optimal importance sampling distribution for a robust regression problem over $n$ rows. Thus our algorithm effectively runs $T$ steps of SGD with importance sampling while using sublinear space and just making a single pass over the data. Our techniques also extend to performing importance sampling for second-order optimization.


翻译:我们采用数据结构,通过抽样梯度(概率与其规范成正比),即重要取样,解决稳健的回归。虽然SGD被广泛用于大规模机器学习,但众所周知,由于统一取样的差别很大,它可能出现缓慢的趋同率。另一方面,重要取样可以显著减少差异,但通常难以执行,因为计算抽样概率需要额外通过数据,在这种情况下,可以使用标准梯度下降(GD)作为替代。在本文中,我们采用了一种算法,从近乎最佳重要性取样分布中提取约$T的维度梯度($d)的样本,以便在一行以上出现稳健的回归问题。因此,我们的算法在使用亚线性空间的同时有效地运行价值取样的SGD级梯级梯级梯级梯($T)步骤,同时对数据进行单次传输。我们的技术还扩大到进行第二级优化的重要取样。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员