Today, scientific research is increasingly data-centric and compute-intensive, relying on data and models across distributed sources. However, it still faces challenges in the traditional cooperation mode, due to the high storage and computing cost, geo-location barriers, and local confidentiality regulations. The Jupyter environment has recently emerged and evolved as a vital virtual research environment for scientific computing, which researchers can use to scale computational analyses up to larger datasets and high-performance computing resources. Nevertheless, existing approaches lack robust support of a decentralized cooperation mode to unlock the full potential of decentralized collaborative scientific research, e.g., seamlessly secure data sharing. In this work, we change the basic structure and legacy norms of current research environments via the seamless integration of Jupyter with Ethereum blockchain capabilities. As such, it creates a Decentralized Virtual Research Environment (D-VRE) from private computational notebooks to decentralized collaborative research ecosystem. We propose a novel architecture for the D-VRE and prototype some essential D-VRE elements for enabling secure data sharing with decentralized identity, user-centric agreement-making, membership, and research asset management. To validate our method, we conducted an experimental study to test all functionalities of D-VRE smart contracts and their gas consumption. In addition, we deployed the D-VRE prototype on a test net of the Ethereum blockchain for demonstration. The feedback from the studies showcases the current prototype's usability, ease of use, and potential and suggests further improvements.
翻译:暂无翻译