Accurate and consistent predictions of echocardiography parameters are important for cardiovascular diagnosis and treatment. In particular, segmentations of the left ventricle can be used to derive ventricular volume, ejection fraction (EF) and other relevant measurements. In this paper we propose a new automated method called EchoGraphs for predicting ejection fraction and segmenting the left ventricle by detecting anatomical keypoints. Models for direct coordinate regression based on Graph Convolutional Networks (GCNs) are used to detect the keypoints. GCNs can learn to represent the cardiac shape based on local appearance of each keypoint, as well as global spatial and temporal structures of all keypoints combined. We evaluate our EchoGraphs model on the EchoNet benchmark dataset. Compared to semantic segmentation, GCNs show accurate segmentation and improvements in robustness and inference runtime. EF is computed simultaneously to segmentations and our method also obtains state-of-the-art ejection fraction estimation. Source code is available online: https://github.com/guybenyosef/EchoGraphs.
翻译:对回声心电图参数的准确和一致预测对于心血管诊断和治疗十分重要,特别是左心室的分块可用于产生心血管体积、弹出分数(EF)和其他相关测量结果。在本文件中,我们提出一种新的自动化方法,称为EchoGraphs,用于预测弹出分数,并通过探测解剖关键点对左心室进行分解。根据图表变异网络(GCNs)进行直接协调回归模型用于检测关键点。GCNs可以学习根据每个关键点的局部外观以及所有关键点的全球空间和时间结构来代表心脏形状。我们在EchoNet基准数据集上对EchoGraphs模型进行了评估。与语系分化相比,GCNs显示了准确的分化和稳健度和推断运行时间的改进。EF是同时计算分解的,我们的方法也获得了最新化的弹射分数估计。源代码可在线查阅:https://github.com/guybenyos/Echophophs。