High-definition (HD) semantic maps are crucial for autonomous vehicles navigating urban environments. Traditional offline HD maps, created through labor-intensive manual annotation processes, are both costly and incapable of accommodating timely updates. Recently, researchers have proposed inferring local maps based on online sensor observations; however, this approach is constrained by the sensor perception range and is susceptible to occlusions. In this work, we propose Neural Map Prior (NMP), a neural representation of global maps that facilitates automatic global map updates and improves local map inference performance. To incorporate the strong map prior into local map inference, we employ cross-attention that dynamically captures correlations between current features and prior features. For updating the global neural map prior, we use a learning-based fusion module to guide the network in fusing features from previous traversals. This design allows the network to capture a global neural map prior during sequential online map predictions. Experimental results on the nuScenes dataset demonstrate that our framework is highly compatible with various map segmentation and detection architectures and considerably strengthens map prediction performance, even under adverse weather conditions and across longer horizons. To the best of our knowledge, this represents the first learning-based system for constructing a global map prior.


翻译:高清晰的语义地图对于自动驾驶车辆在城市环境中行驶至关重要。传统的离线高清晰度地图需要通过费力的手动注释过程创建,成本高昂且无法及时更新。最近,研究人员提出根据在线传感器观测推断局部地图的方法,但该方法受传感器感知范围限制并易受遮挡。在本文中,我们提出了一种神经地图先验(NMP)的方法,它是全局地图的神经表示,可促进全局地图的自动更新并提高局部地图推断性能。为了将强大的地图先验融入局部地图推断中,我们采用交叉注意力动态捕捉当前特征和先前特征之间的关联。为了更新全局神经地图先验,我们使用学习融合模块来指导网络融合之前遍历的特征。这种设计允许网络在顺序的在线地图预测过程中捕获一个全局的神经地图先验。在nuScenes数据集上的实验结果表明,我们的框架与各种图分割和检测体系结构高度兼容,并且即使在恶劣的天气条件下和在更长的时间范围内也显着加强了地图预测性能。据我们所知,这是构建全局地图先验的第一个基于学习的系统。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻MixTraining: 一种全新的物体检测训练范式
专知会员服务
11+阅读 · 2021年12月9日
专知会员服务
31+阅读 · 2021年6月12日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【泡泡一分钟】用于视角可变重定位的语义地图构建
泡泡机器人SLAM
19+阅读 · 2019年10月21日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2023年1月5日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关VIP内容
NeurIPS 2021 | 寻MixTraining: 一种全新的物体检测训练范式
专知会员服务
11+阅读 · 2021年12月9日
专知会员服务
31+阅读 · 2021年6月12日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
【泡泡一分钟】用于视角可变重定位的语义地图构建
泡泡机器人SLAM
19+阅读 · 2019年10月21日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
相关基金
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员