Statistical learning additions to physically derived mathematical models are gaining traction in the literature. A recent approach has been to augment the underlying physics of the governing equations with data driven Bayesian statistical methodology. Coined statFEM, the method acknowledges a priori model misspecification, by embedding stochastic forcing within the governing equations. Upon receipt of additional data, the posterior distribution of the discretised finite element solution is updated using classical Bayesian filtering techniques. The resultant posterior jointly quantifies uncertainty associated with the ubiquitous problem of model misspecification and the data intended to represent the true process of interest. Despite this appeal, computational scalability is a challenge to statFEM's application to high-dimensional problems typically experienced in physical and industrial contexts. This article overcomes this hurdle by embedding a low-rank approximation of the underlying dense covariance matrix, obtained from the leading order modes of the full-rank alternative. Demonstrated on a series of reaction-diffusion problems of increasing dimension, using experimental and simulated data, the method reconstructs the sparsely observed data-generating processes with minimal loss of information, in both posterior mean and the variance, paving the way for further integration of physical and probabilistic approaches to complex systems.


翻译:物理衍生数学模型的统计学习增加在文献中逐渐增加。最近的一种做法是用数据驱动的巴耶西亚统计方法来强化治理方程的基本物理物理原理。coined STAFEM,该方法通过在治理方程中嵌入随机力,承认了先验模型的偏差特性。在收到额外数据后,使用古典巴伊西亚过滤技术更新了离散的有限元素溶液的后端分布。由此产生的后端现象共同量化了与模型误差和旨在代表真正感兴趣的过程的数据的普遍存在问题相关的不确定性。尽管如此,计算性可变性对SATFEM在物理和工业环境中通常经历的高度问题应用是一种挑战。本文章克服了这一障碍,将基础密集的易变异性矩阵的低端近似值嵌入了从全位替代方法的主要顺序模式中获取的。通过实验和模拟数据,用实验和模拟数据模拟数据,将观测到的低位数据整合方法重新构建了以最低程度的复杂数据生成系统。

0
下载
关闭预览

相关内容

【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
28+阅读 · 2020年11月4日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员