We consider a statistical inverse learning problem, where the task is to estimate a function $f$ based on noisy point evaluations of $Af$, where $A$ is a linear operator. The function $Af$ is evaluated at i.i.d. random design points $u_n$, $n=1,...,N$ generated by an unknown general probability distribution. We consider Tikhonov regularization with general convex and $p$-homogeneous penalty functionals and derive concentration rates of the regularized solution to the ground truth measured in the symmetric Bregman distance induced by the penalty functional. We derive concrete rates for Besov norm penalties and numerically demonstrate the correspondence with the observed rates in the context of X-ray tomography.
翻译:我们认为,这是一个统计反向学习问题,我们的任务是根据对美元(A$)的吵闹点评价来估计一个功能,即美元(A$)是一个线性操作员。函数美元(AF$)按随机设计点(i.d.d.随机设计点($u_n$,$n=1,...)来评价。我们认为,Tikhonov在一般概率分布不明的情况下,用一般阴道和美元-均匀罚款进行正规化,并得出在对称 Bregman 距离下测量的固定解决方案的集中率。我们得出Besov 标准处罚的具体比率,并在X射线照相中用数字显示与观察到的率的对应率。