We propose a new, more general definition of extended probability measures. We study their properties and provide a behavioral interpretation. We use them in an inference procedure, whose environment is canonically represented by the probability space $(\Omega,\mathcal{F},P)$, when both $P$ and the composition of $\Omega$ are unknown. We develop an ex ante analysis -- taking place before the statistical analysis requiring knowledge of $\Omega$ -- in which we progressively learn the true composition of $\Omega$. We describe how to update extended probabilities in this setting, and introduce the concept of lower extended probabilities. We provide two examples in the fields of ecology and opinion dynamics.
翻译:我们提议对扩大概率计量方法提出新的、更一般性的定义。我们研究其属性并提供行为解释。我们用这些属性进行推论,在无法同时了解美元和美元构成的情况下,其环境可以以概率空间$(Omega,\mathcal{F},P)代表,当美元和美元构成都不为人知时,我们用这种推论程序使用这些属性,我们在需要了解美元和美元知识的统计分析之前进行事先分析,逐步了解美元的真实构成。我们描述了如何更新这一环境中的扩展概率,并提出了较低概率的概念。我们在生态和观点动态领域举了两个例子。