Understanding the dependence structure between response variables is an important component in the analysis of correlated multivariate data. This article focuses on modeling dependence structures in multivariate binary data, motivated by a study aiming to understand how patterns in different U.S. senators' votes are determined by similarities (or lack thereof) in their attributes, e.g., political parties and social network profiles. To address such a research question, we propose a new Ising similarity regression model which regresses pairwise interaction coefficients in the Ising model against a set of similarity measures available/constructed from covariates. Model selection approaches are further developed through regularizing the pseudo-likelihood function with an adaptive lasso penalty to enable the selection of relevant similarity measures. We establish estimation and selection consistency of the proposed estimator under a general setting where the number of similarity measures and responses tend to infinity. Simulation study demonstrates the strong finite sample performance of the proposed estimator in terms of parameter estimation and similarity selection. Applying the Ising similarity regression model to a dataset of roll call voting records of 100 U.S. senators, we are able to quantify how similarities in senators' parties, businessman occupations and social network profiles drive their voting associations.
翻译:暂无翻译