Sequence parallelism (SP), which divides the sequence dimension of input tensors across multiple computational devices, is becoming key to unlocking the long-context capabilities of generative AI models. This paper investigates the state-of-the-art SP approaches, i.e. DeepSpeed-Ulysses and Ring-Attention, and proposes a unified SP approach, which is more robust to transformer model architectures and network hardware topology. This paper compares the communication and memory cost of SP and existing parallelism, including data/tensor/zero/pipeline parallelism, and discusses the best practices for designing hybrid 4D parallelism involving SP. We achieved 47% MFU on two 8xA800 nodes using SP for the LLAMA3-8B model training using sequence length 208K. Our code is publicly available at https://github.com/feifeibear/long-context-attention.
翻译:暂无翻译