Motion Planning is necessary for robots to complete different tasks. Rapidly-exploring Random Tree (RRT) and its variants have been widely used in robot motion planning due to their fast search in state space. However, they perform not well in many complex environments since the motion planning needs to simultaneously consider the geometry constraints and differential constraints. In this article, we propose a novel robot motion planning algorithm that utilizes multi-tree to guide the exploration and exploitation. The proposed algorithm maintains more than two trees to search the state space at first. Each tree will explore the local environment. The tree starts from the root will gradually collect information from other trees and grow towards the goal state. This simultaneous exploration and exploitation method can quickly find a feasible trajectory. We compare the proposed algorithm with other popular motion planning algorithms. The experiment results demonstrate that our algorithm achieves the best performance on different evaluation metrics.
翻译:移动规划是机器人完成不同任务的必要条件。 快速探索随机树( RRT) 及其变体由于在州空间快速搜索而被广泛用于机器人运动规划。 但是,它们在许多复杂的环境中表现不佳, 因为动作规划需要同时考虑几何限制和差异限制。 在文章中, 我们提出一个新的机器人运动规划算法, 利用多树来指导勘探和开发。 提议的算法保留了超过两棵树来首先搜索州空间。 每棵树将探索当地环境。 从根底开始的树将逐渐从其他树中收集信息并增长到目标状态。 这种同时探索和利用的方法可以很快找到可行的轨迹。 我们比较了拟议的算法和其他流行的运动规划算法。 实验结果显示我们的算法在不同的评估指标上取得了最佳的性能。