Mobile robots are used in industrial, leisure, and military applications. In some situations, a robot navigation solution relies only on inertial sensors and as a consequence, the navigation solution drifts in time. In this paper, we propose the MoRPI framework, a mobile robot pure inertial approach. Instead of travelling in a straight line trajectory, the robot moves in a periodic motion trajectory to enable peak-to-peak estimation. In this manner, instead of performing three integrations to calculate the robot position in a classical inertial solution, an empirical formula is used to estimate the travelled distance. Two types of MoRPI approaches are suggested, where one is based on both accelerometer and gyroscope readings while the other is only on gyroscopes. Closed form analytical solutions are derived to show that MoRPI produces lower position error compared to the classical pure inertial solution. In addition, to evaluate the proposed approach, field experiments were made with a mobile robot equipped with two types of inertial sensors. In total, 143 trajectories with a time duration of 75 minutes were collected and evaluated. The results show the benefits of using our approach. To facilitate further development of the proposed approach, both dataset and code are publicly available at https://github.com/ansfl/MoRPI.
翻译:移动机器人用于工业、休闲和军事用途。 在某些情况下, 机器人导航解决方案只依赖于惯性传感器, 结果导航解决方案会随时间而漂移。 在本文中, 我们建议采用移动式机器人惯性仪框架, 即移动式机器人纯惯性方法。 机器人不是在直线轨道上运行, 而是在定期运动轨迹中移动, 以便进行峰值至峰值估计。 这样, 而不是用三种整合方法来计算古典惯性惯性解决方案中的机器人位置, 而是使用一种实验公式来估计行走的距离。 总共收集并评价了两种类型的移动式机器人方法, 其中两种方法以加速计和陀螺仪读数为基础, 而另一种方法仅以陀螺仪为根据; 使用封闭式分析解决方案来显示, 与古典纯惯性惯性惯性解决方案相比, 其位置错误较低。 此外, 为了评估拟议方法, 实地实验使用了一种配备两种惯性传感器的移动式机器人。 总共收集并评价了143个时间为75分钟的轨迹图。 结果显示, 使用我们的方法可以公开获得的数据/ 。