Large crossed mixed effects models with imbalanced structures and missing data pose major computational challenges for standard Bayesian posterior sampling algorithms, as the computational complexity is usually superlinear in the number of observations. We propose two efficient subset-based stochastic gradient MCMC algorithms for such crossed mixed effects model, which facilitate scalable inference on both the variance components and regression coefficients. The first algorithm is developed for balanced design without missing observations, where we leverage the closed-form expression of precision matrix for the full data matrix. The second algorithm, which we call the pigeonhole stochastic gradient Langevin dynamics (PSGLD), is developed for both balanced and unbalanced designs with potentially a large proportion of missing observations. Our PSGLD algorithm imputes the latent crossed random effects by running short Markov chains and then samples the model parameters of variance components and regression coefficients at each MCMC iteration. We provide theoretical guarantee by showing the convergence of the output distribution from the proposed algorithms to the target non-log-concave posterior distribution. A variety of numerical experiments based on both synthetic and real data demonstrate that the proposed algorithms can significantly reduce the computational cost of the standard MCMC algorithms and better balance the approximation accuracy and computational efficiency.


翻译:由于计算复杂性通常是观测数量的超线性,因此对标准的巴耶西亚海边取样算法构成重大的计算挑战。我们建议为这种跨多重效应模型采用两种高效的子集随机梯度的MCMC算法,便于对差异组成部分和回归系数进行可缩放的推断。第一个算法是为平衡设计而开发的,不缺少观察,我们利用精确矩阵的封闭式表达式来进行完整的数据矩阵。第二个算法,我们称之为鸽子洞梯度兰埃文动力学(PSGLD),是为平衡和不平衡的设计而开发的,可能缺少大量观测。我们的PSGLD算法通过运行短的马尔科夫链对潜在的跨随机效应进行精细化,然后在每次监测监测中抽取差异组成部分和回归系数的模型参数。我们通过显示拟议算法与目标非对映式后分布的结合,从理论上提供保证。基于合成和真实数据测算法和精确度计算方法的各种数字实验,可以大大降低拟议测算法的成本和精确度。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月16日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员