Let $q=p^h$ be a prime power and $e$ be an integer with $0\leq e\leq h-1$. $e$-Galois self-orthogonal codes are generalizations of Euclidean self-orthogonal codes ($e=0$) and Hermitian self-orthogonal codes ($e=\frac{h}{2}$ and $h$ is even). In this paper, we propose two general methods to construct $e$-Galois self-orthogonal (extended) generalized Reed-Solomon (GRS) codes. As a consequence, eight new classes of $e$-Galois self-orthogonal (extended) GRS codes with odd $q$ and $2e\mid h$ are obtained. Based on the Galois dual of a code, we also study its punctured and shortened codes. As applications, new $e'$-Galois self-orthogonal maximum distance separable (MDS) codes for all possible $e'$ satisfying $0\leq e'\leq h-1$, new $e$-Galois self-orthogonal MDS codes via the shortened codes, and new MDS codes with prescribed dimensional $e$-Galois hull via the punctured codes are derived. Moreover, some new $\sqrt{q}$-ary quantum MDS codes with lengths greater than $\sqrt{q}+1$ and minimum distances greater than $\frac{\sqrt{q}}{2}+1$ are obtained.


翻译:美元=美元=美元=美元=美元 美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=元=元=元=元=元=美元=美元=美元=美元=元=元=元=元=元=美元=美元=美元=美元=元=美元=美元=美元=美元=美元=美元=美元=元=美元=元=美元=元=元=元=美元=元=元=元=美元=美元=美元=元=美元=美元=美元=元=美元=元=美元=美元=元=元=美元=美元=美元=美元=美元=美元=美元=元=美元=美元=美元=国=美元=美元=美元=美元=国=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=元=元=元=元=元=元=元=元=元=元=元=元=元=元=元=元=元=元=元=元=元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=元=元=元=元=元=元=元=元=元=元=元=元=元=元=元=美元

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员