项目名称: 用于微流体驱动的微纳米多级沟槽结构的飞秒激光制备技术研究

项目编号: No.61505047

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 吴思竹

作者单位: 合肥工业大学

项目金额: 20万元

中文摘要: 基于微纳米结构的表面张力驱动是一种无需外部能量输入就能驱动液体流动的方法,在微流控芯片中具有广阔的应用前景。本项目针对目前微流控芯片中表面张力驱动时流体速度和流量不易控制等问题,拟提出利用一种高效率、多尺度的飞秒激光加工在微通道内壁刻蚀微纳米多级复合的新型沟槽阵列结构。该结构有两个特色:a)各向异性的沟槽阵列可以方向性控制流体运动行为;b)沟槽表面的微纳米多级复合结构又能增强表面浸润性或疏水性,更有利于流体控制。因此,本项目主要研究内容有:1)利用pump-prob探测技术,研究飞秒激光与材料(如玻璃、PDMS、金属等)的超快吸收机制及关键优化工艺;2)飞秒激光在平表面刻蚀可控的2D-3D各向异性仿生微纳米复合大沟槽结构及其浸润特性研究;3)飞秒激光在微通道内刻蚀各向异性微纳米复合沟槽结构的可控加工,实现微流体在微通道中的可控流动并将其运用到微流控系统中。

中文关键词: 激光加工;仿生微结构;微流体驱动

英文摘要: Surface tension driving based on micro/nanostructure is a promising method to drive fluid flow without external energy, and has showed broad potential applications in microfluidic chip. However, the fluid velocity and flow volume by surface tension driving in microfluidic chip is still difficult to be controlled. To solve the problem, this project proposed a high-efficiency, multiscale femtosecond laser processing technique to etch novel multilevel micro/nanogroove structures in microchannels. This structure has two distinct advantages: a) Anisotropic groove array can directionally control the fluid motion behavior; b) the micronanostructure on groove surface can enhance the surface wettability or hydrophobicity which is beneficial for fluid control. The main research contents of this project contain: 1) using pump-prob technique, the investigation of the ultrafast absorption mechanism and key technology optimization between femtosecond laser and materials (such as glass, PDMS, metal etc.); 2) The fabrication of 2D-3D anisotropic controllable biomimetic micronanogroove structures on the flat surface by femtosecond laser microfabrication and their wetting properties; 3) In-channel fabrication of anisotropic controllable biomimetic micronanogroove structures by femtosecond laser microfabrication and the realization of controllable fluid motion in micro channel for its future microfluidic applications.

英文关键词: laser fabrication;biomimetic micro/nanostructures;microfluidic driving

成为VIP会员查看完整内容
0

相关内容

【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
57+阅读 · 2022年2月3日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
【开放书】Python + Matplotlib可视化指南,249页pdf
专知会员服务
97+阅读 · 2021年11月17日
专知会员服务
46+阅读 · 2021年10月10日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
15+阅读 · 2021年5月13日
基于Python介绍算法和数据结构的在线互动书,240页pdf
专知会员服务
60+阅读 · 2021年2月3日
基于深度学习的手语识别综述
专知会员服务
46+阅读 · 2020年5月18日
【ACL2020-复旦大学NLP】异构图神经网络的文档摘要提取
专知会员服务
34+阅读 · 2020年5月1日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
27+阅读 · 2020年4月6日
使用 CameraX Extensions API 将特效应用到照片上
谷歌开发者
0+阅读 · 2021年10月27日
一种关键字提取新方法
1号机器人网
21+阅读 · 2018年11月15日
ISI新研究:胶囊生成对抗网络
论智
17+阅读 · 2018年3月7日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
19+阅读 · 2021年1月14日
Arxiv
16+阅读 · 2020年5月20日
Generative Adversarial Networks: A Survey and Taxonomy
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关VIP内容
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
57+阅读 · 2022年2月3日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
【开放书】Python + Matplotlib可视化指南,249页pdf
专知会员服务
97+阅读 · 2021年11月17日
专知会员服务
46+阅读 · 2021年10月10日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
15+阅读 · 2021年5月13日
基于Python介绍算法和数据结构的在线互动书,240页pdf
专知会员服务
60+阅读 · 2021年2月3日
基于深度学习的手语识别综述
专知会员服务
46+阅读 · 2020年5月18日
【ACL2020-复旦大学NLP】异构图神经网络的文档摘要提取
专知会员服务
34+阅读 · 2020年5月1日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
27+阅读 · 2020年4月6日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
19+阅读 · 2021年1月14日
Arxiv
16+阅读 · 2020年5月20日
Generative Adversarial Networks: A Survey and Taxonomy
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
10+阅读 · 2018年2月17日
微信扫码咨询专知VIP会员