We study the problem of fairly allocating a set of indivisible items to a set of agents with additive valuations. Recently, Feige et al. (WINE'21) proved that a maximin share (MMS) allocation exists for all instances with $n$ agents and no more than $n + 5$ items. Moreover, they proved that an MMS allocation is not guaranteed to exist for instances with $3$ agents and at least $9$ items, or $n \ge 4$ agents and at least $3n + 3$ items. In this work, we shrink the gap between these upper and lower bounds for guaranteed existence of MMS allocations. We prove that for any integer $c > 0$, there exists a number of agents $n_c$ such that an MMS allocation exists for any instance with $n \ge n_c$ agents and at most $n + c$ items, where $n_c \le \lfloor 0.6597^c \cdot c!\rfloor$ for allocation of goods and $n_c \le \lfloor 0.7838^c \cdot c!\rfloor$ for chores. Furthermore, we show that for $n \neq 3$ agents, all instances with $n + 6$ goods have an MMS allocation.
翻译:最近,Feige等人(WINE'21)证明,在所有情况下,只要有美元代理,且不超过美元+5美元项目,就存在最大份额分配。此外,他们证明,如果有3美元代理和至少9美元的至少9美元项目,或者4美元代理和至少3美元+3美元的至少3美元项目,则不能保证有最低份额分配。在这项工作中,我们缩小了保证有MMS拨款的上限和下限之间的差额。我们证明,对于任何整数(c) > 0美元,就存在一些代理和不超过5美元+5美元的项目,任何情况下都存在最低份额分配。如果有3美元/美元代理和至少9美元,最低分配额为0.6597美元c\cdot c.。我们证明,对于任何整数(c)美元,最低分配额为0.7838美元,最高限额为3美元。