This paper describes our DKU-OPPO system for the 2022 Spoofing-Aware Speaker Verification (SASV) Challenge. First, we split the joint task into speaker verification (SV) and spoofing countermeasure (CM), these two tasks which are optimized separately. For ASV systems, four state-of-the-art methods are employed. For CM systems, we propose two methods on top of the challenge baseline to further improve the performance, namely Embedding Random Sampling Augmentation (ERSA) and One-Class Confusion Loss(OCCL). Second, we also explore whether SV embedding could help improve CM system performance. We observe a dramatic performance degradation of existing CM systems on the domain-mismatched Voxceleb2 dataset. Third, we compare different fusion strategies, including parallel score fusion and sequential cascaded systems. Compared to the 1.71% SASV-EER baseline, our submitted cascaded system obtains a 0.21% SASV-EER on the challenge official evaluation set.
翻译:本文介绍了2022年Spoofing-Aware Speating-Aware Republic(SASV)的DKU-OPPO系统(SASV) 。 首先,我们将联合任务分成了发言者核查(SV)和防波反制(CM)这两个分别优化的任务。对于ASV系统,我们采用了四种最先进的方法。对于CM系统,我们提议在挑战基线之上采用两种方法来进一步改进性能,即嵌入随机抽样增加(ERSA)和单级拼凑损失(OCL)。第二,我们还探讨SV嵌入是否有助于改进CM系统性能。我们观察到,在域相配Voxceleb2数据集中,现有CM系统的性能急剧退化。第三,我们比较了不同的聚变战略,包括平行的分数和级联系统。与SSPV-ER的1.71%基线相比,我们提交的级联系统在挑战官方评价数据集上获得了0.21% SASV-EER。