In this paper, we propose a simple acceleration scheme for Riemannian gradient methods by extrapolating iterates on manifolds. We show when the iterates are generated from Riemannian gradient descent method, the accelerated scheme achieves the optimal convergence rate asymptotically and is computationally more favorable than the recently proposed Riemannian Nesterov accelerated gradient methods. Our experiments verify the practical benefit of the novel acceleration strategy.
翻译:在本文中,我们提出了一个简单的里曼尼梯度方法加速计划,通过对多元体进行外推法推算。我们展示了在里曼尼梯度梯度方法产生迭代时,加速计划无一例外地实现了最佳趋同率,并且计算上比最近提议的里曼尼涅斯特罗夫加速梯度方法更有利。我们的实验证实了新加速战略的实际效益。