Clinical diagnosis of the pediatric musculoskeletal system relies on the analysis of medical imaging examinations. In the medical image processing pipeline, semantic segmentation using deep learning algorithms enables an automatic generation of patient-specific three-dimensional anatomical models which are crucial for morphological evaluation. However, the scarcity of pediatric imaging resources may result in reduced accuracy and generalization performance of individual deep segmentation models. In this study, we propose to design a novel multi-task, multi-domain learning framework in which a single segmentation network is optimized over the union of multiple datasets arising from distinct parts of the anatomy. Unlike previous approaches, we simultaneously consider multiple intensity domains and segmentation tasks to overcome the inherent scarcity of pediatric data while leveraging shared features between imaging datasets. To further improve generalization capabilities, we employ a transfer learning scheme from natural image classification, along with a multi-scale contrastive regularization aimed at promoting domain-specific clusters in the shared representations, and multi-joint anatomical priors to enforce anatomically consistent predictions. We evaluate our contributions for performing bone segmentation using three scarce and pediatric imaging datasets of the ankle, knee, and shoulder joints. Our results demonstrate that the proposed approach outperforms individual, transfer, and shared segmentation schemes in Dice metric with statistically sufficient margins. The proposed model brings new perspectives towards intelligent use of imaging resources and better management of pediatric musculoskeletal disorders.
翻译:对小儿科肌肉骨骼系统的临床诊断依赖对医学成像检查的分析。在医疗图像处理管道中,使用深层学习算法进行语解分解,可以自动生成对形态评估至关重要的针对病人的三维解剖模型;然而,儿科成像资源稀缺,可能导致个人深层分解模型的准确性和一般性能降低。在本研究中,我们提议设计一个新的多任务、多领域学习框架,使单一分解网络优化于由解剖学的不同部分产生的多数据集组合。与以往的方法不同,我们同时考虑多个密度领域和分解任务,以克服与病人有关的三维解剖数据固有的稀缺性,同时利用成像数据集之间的共同特征。为了进一步提高一般化能力,我们采用了从自然图像分类中转学计划,同时采用多层次对比性正规化模式,目的是在共享的表达中促进特定领域的组合,多层次分解前,以实施更一致的解剖面预测。我们用三个深度的统计分析方法评估了我们用于进行骨骼分解剖的充分的统计分析结果,并展示了我们用于共同的肩部位分析结果。