Graph contrastive learning (GCL) has emerged as an effective tool for learning unsupervised representations of graphs. The key idea is to maximize the agreement between two augmented views of each graph via data augmentation. Existing GCL models mainly focus on applying \textit{identical augmentation strategies} for all graphs within a given scenario. However, real-world graphs are often not monomorphic but abstractions of diverse natures. Even within the same scenario (e.g., macromolecules and online communities), different graphs might need diverse augmentations to perform effective GCL. Thus, blindly augmenting all graphs without considering their individual characteristics may undermine the performance of GCL arts.To deal with this, we propose the first principled framework, termed as \textit{G}raph contrastive learning with \textit{P}ersonalized \textit{A}ugmentation (GPA), to advance conventional GCL by allowing each graph to choose its own suitable augmentation operations.In essence, GPA infers tailored augmentation strategies for each graph based on its topology and node attributes via a learnable augmentation selector, which is a plug-and-play module and can be effectively trained with downstream GCL models end-to-end. Extensive experiments across 11 benchmark graphs from different types and domains demonstrate the superiority of GPA against state-of-the-art competitors.Moreover, by visualizing the learned augmentation distributions across different types of datasets, we show that GPA can effectively identify the most suitable augmentations for each graph based on its characteristics.


翻译:对比图形学习( GCL ) 已经成为学习不受监督的图形表达方式的有效工具。 关键的想法是通过数据增强使每个图形的两种扩大视图之间的协议最大化。 现有的 GCL 模型主要侧重于在给定的假想中对所有图形应用\ textit{ 均匀增强战略} 。 然而, 真实世界图形往往不是单一的,而是不同性质的抽象。 即使在同一个假想中( 例如, 宏观分子和在线社区), 不同的图形可能需要不同的增强功能来实施有效的 GCL 。 因此, 盲目地增加所有图形可能会损害GCL 艺术的单个特性。 处理此事宜, 我们提出第一个原则框架, 被称为\ textitit{ G} 匹配的对比学习。 即使在不同的假想中, 允许每个图表选择适合的增强功能。 GPOP 可以根据每个图表的上层和节点特性增加所有图表的扩展战略, 并且通过一个经过训练的直观的直观的直观的直径的直径分布模型, 将显示每个不同的直径的直径的直径的直径的直径的GL 模模型。 。 选择和直径的直径的直径的直径的直径的直径的直径方向的直径的直径的直方向模型, 可以展示显示每个方向的直径的直径向方向的直径向方向的直向方向的直径向方向的直径向方向模型显示每个方向的路径显示每个方向的路径式的直径方向的路径式的显示。

0
下载
关闭预览

相关内容

专知会员服务
54+阅读 · 2020年11月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员