We present a multi-robot task and motion planning method that, when applied to the rearrangement of objects by manipulators, results in solution times up to three orders of magnitude faster than existing methods and successfully plans for problems with up to twenty objects, more than three times as many objects as comparable methods. We achieve this improvement by decomposing the planning space to consider manipulators alone, objects, and manipulators holding objects. We represent this decomposition with a hypergraph where vertices are decomposed elements of the planning spaces and hyperarcs are transitions between elements. Existing methods use graph-based representations where vertices are full composite spaces and edges are transitions between these. Using the hypergraph reduces the representation size of the planning space-for multi-manipulator object rearrangement, the number of hypergraph vertices scales linearly with the number of either robots or objects, while the number of hyperarcs scales quadratically with the number of robots and linearly with the number of objects. In contrast, the number of vertices and edges in graph-based representations scales exponentially in the number of robots and objects. We show that similar gains can be achieved for other multi-robot task and motion planning problems.


翻译:我们提出了一种多机器人任务和动作规划方法,将其应用于通过操纵器对物体进行重新排列,与现有方法相比,其解决时间快了三个数量级,并且成功地计划了多达二十个物体的问题,比可比方法多三倍以上的物体数量。我们通过将规划空间分解来实现这种改进,仅考虑操纵器,物体和携带物体的操纵器。我们用超图表示这个分解,其中顶点是规划空间的分解元素,超弧是元素之间的转换。现有方法使用基于图形的表示,其中顶点是完整的复合空间,而边是这些空间之间的过渡。使用超图减少了规划空间的表示大小 - 对于多操纵器物体重排,超图顶点的数量与机器人或物体的数量呈线性比例增长,而超弧的数量与机器人的数量呈二次比例增长,且与物体的数量呈线性比例增长。相比之下,基于图形的表示中的顶点和边的数量随机器人和物体的数量呈指数比例增长。我们表明,对于其他多机器人任务和动作规划问题,可以实现类似的收益。

0
下载
关闭预览

相关内容

【CIKM2022】基于双向Transformers对比学习的序列推荐
专知会员服务
21+阅读 · 2022年8月10日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
RL解决'LunarLander-v2' (SOTA)
CreateAMind
62+阅读 · 2019年9月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关VIP内容
【CIKM2022】基于双向Transformers对比学习的序列推荐
专知会员服务
21+阅读 · 2022年8月10日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
RL解决'LunarLander-v2' (SOTA)
CreateAMind
62+阅读 · 2019年9月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员