Motivated by applications to resource-limited and safety-critical domains, we study selective classification in the online learning model, wherein a predictor may abstain from classifying an instance. For example, this may model an adaptive decision to invoke more resources on this instance. Two salient aspects of the setting we consider are that the data may be non-realisable, due to which abstention may be a valid long-term action, and that feedback is only received when the learner abstains, which models the fact that reliable labels are only available when the resource intensive processing is invoked. Within this framework, we explore strategies that make few mistakes, while not abstaining too many times more than the best-in-hindsight error-free classifier from a given class. That is, the one that makes no mistakes, while abstaining the fewest number of times. We construct simple versioning-based schemes for any $\mu \in (0,1],$ that make most $T^\mu$ mistakes while incurring \smash{$\tilde{O}(T^{1-\mu})$} excess abstention against adaptive adversaries. We further show that this dependence on $T$ is tight, and provide illustrative experiments on realistic datasets.
翻译:基于对资源有限和安全关键领域的应用,我们研究在线学习模式中的选择性分类,预测者可以不对实例进行分类。例如,这可以模拟一项适应性决定,以援引更多这方面的资源。我们认为,这一设置的两个突出方面是数据可能无法实现,因为弃权可能是一种有效的长期行动,只有在学习者弃权时才收到反馈,因为学习者弃权就模拟了只有在援引资源密集处理时才提供可靠的标签这一事实。在这个框架内,我们探索了几个错误的战略,而没有从某个类别中放弃比最近于近距离无错的分类者多很多倍的战略。这就是,一个没有错误的,而避免了最少次数的数据。我们为任何以美元为基础的简单版本计划(0,1,1,美元),而美元使大多数T ⁇ mu美元错误同时导致资源密集处理。在这个框架内,我们探索了几个错误不多,但不会在特定类别中放弃太多次于最近距离无误的分类。我们进一步展示了这种对适应性敌对性实验的依赖性数据。