We study the greedy-based online algorithm for edge-weighted matching with (one-sided) vertex arrivals in bipartite graphs, and edge arrivals in general graphs. This algorithm was first studied more than a decade ago by Korula and P\'al for the bipartite case in the random-order model. While the weighted bipartite matching problem is solved in the random-order model, this is not the case in recent and exciting online models in which the online player is provided with a sample, and the arrival order is adversarial. The greedy-based algorithm is arguably the most natural and practical algorithm to be applied in these models. Despite its simplicity and appeal, and despite being studied in multiple works, the greedy-based algorithm was not fully understood in any of the studied online models, and its actual performance remained an open question for more than a decade. We provide a thorough analysis of the greedy-based algorithm in several online models. For vertex arrivals in bipartite graphs, we characterize the exact competitive-ratio of this algorithm in the random-order model, for any arrival order of the vertices subsequent to the sampling phase (adversarial and random orders in particular). We use it to derive tight analysis in the recent adversarial-order model with a sample (AOS model) for any sample size, providing the first result in this model beyond the simple secretary problem. Then, we generalize and strengthen the black box method of converting results in the random-order model to single-sample prophet inequalities, and use it to derive the state-of-the-art single-sample prophet inequality for the problem. Finally, we use our new techniques to analyze the greedy-based algorithm for edge arrivals in general graphs and derive results in all the mentioned online models. In this case as well, we improve upon the state-of-the-art single-sample prophet inequality.
翻译:我们用双面图和一般图来研究以贪婪为基础的在线算法,以利其与(单面)顶端到达相匹配。这个算法是科鲁拉和P\'al在十多年前首先研究的随机顺序模型中的双面到达者。尽管加权双面匹配问题在随机顺序模型中得到了解决,但在最近和令人兴奋的在线模型中却不是这种情况,在线玩家得到一个样本,而抵达顺序是对抗性的。基于贪婪的顶端到达者可能是这些模型中最自然和最实际的计算法。尽管它的简单性和吸引力,而且尽管在多个工作中研究过,科鲁拉和P\'al首次研究过这个算法,但在任何研究过的在线模型中,贪婪的算法还没有完全被理解,在几个在线模型中,我们对贪婪的算法进行了透彻的分析。对于双面模型中出现的双面总模型中,我们将这种算法的精确的竞争性比值用于随机模型中,对于任何到达的黑面的算算法都是最自然和最自然的算法。 在取样阶段中,我们用一个单一的标次的排序中,我们用一个结果来分析。我们用一个单一的算法,然后用一个单一的算算法,我们用一个简单的方法来分析。