Many recommendation algorithms rely on user data to generate recommendations. However, these recommendations also affect the data obtained from future users. This work aims to understand the effects of this dynamic interaction. We propose a simple model where users with heterogeneous preferences arrive over time. Based on this model, we prove that naive estimators, i.e. those which ignore this feedback loop, are not consistent. We show that consistent estimators are efficient in the presence of myopic agents. Our results are validated using extensive simulations.
翻译:许多建议算法依靠用户数据来产生建议。 但是,这些建议也影响从未来用户获得的数据。 这项工作旨在了解这种动态互动的效果。 我们提出了一个简单模型,让不同偏好用户随时间推移而到达。 根据这个模型,我们证明天真的估计器,即那些忽视反馈环的估算器,是不一致的。 我们显示,在有近视代理的情况下,一致的估算器是有效的。 我们的结果通过广泛的模拟得到验证。