We propose a methodology for identifying the optimal DERs allocation with vulnerable node identification into consideration in active electrical distribution network and named those nodes as critical nodes. Power variation in these critical nodes would significantly affect the operation of other linked nodes, thus these nodes are suitable and considered optimal for DERs placement. We demonstrated our method evaluation in a standard IEEE-123 test feeder system. Initially, we partitioned the distribution system into optimal microgrid networks using graph theory. The partitioning was validated using graph neural network architecture for suitable formation of the microgrids. Further, using an effective measurable causality analysis like granger causality, we identified critical nodes in the partitioned microgrid and placement of DERs on these nodes resulted in enhanced network reliability and resiliency. Further, to validate the system performance and energy resiliency, we computed percolation threshold for the microgrid network that indicates the system resiliency after incorporating DERs at those critical nodes. This proposed methodology for the first ensures effective microgrid partitioning, identification of critical nodes, optimal DERs allocation and system resiliency evaluation through data driven analysis approach in a distribution network.
翻译:我们提出一种方法,用于在活跃的配电网络中确定具有脆弱节点识别特征的最佳配发区分配,并将这些节点命名为关键节点。这些关键节点的功率变化将大大影响其他连接节点的运行,因此这些节点是适合的,被认为是最适合DER的设置。我们在标准IEEE-123测试支线系统中展示了我们的方法评价。我们最初使用图形理论将配送系统分割成最佳微型网网点网络。利用图形神经网络结构对分区进行了验证,以适当形成微型电网。此外,利用有效的可测量因果分析,如颗粒因果分析,我们查明了分布式微型电网的关键节点,并在这些节点上安置了DERS的关键节点,从而提高了网络的可靠性和复原力。此外,为了验证系统性能和能源弹性,我们计算了微型网网网网网的连接阈值,以显示在这些关键节点上安装了DERS后系统是否具有弹性。为第一个提议的方法是通过在分布网络中的数据驱动分析确保有效的微网点分割、确定关键节点、优化的DERS分配和系统弹性评估,从而确保有效的微网点分配和系统弹性分配。