We propose a methodology for identifying the optimal DERs allocation with vulnerable node identification into consideration in active electrical distribution network and named those nodes as critical nodes. Power variation in these critical nodes would significantly affect the operation of other linked nodes, thus these nodes are suitable and considered optimal for DERs placement. We demonstrated our method evaluation in a standard IEEE-123 test feeder system. Initially, we partitioned the distribution system into optimal microgrid networks using graph theory. The partitioning was validated using graph neural network architecture for suitable formation of the microgrids. Further, using an effective measurable causality analysis like granger causality, we identified critical nodes in the partitioned microgrid and placement of DERs on these nodes resulted in enhanced network reliability and resiliency. Further, to validate the system performance and energy resiliency, we computed percolation threshold for the microgrid network that indicates the system resiliency after incorporating DERs at those critical nodes. This proposed methodology for the first ensures effective microgrid partitioning, identification of critical nodes, optimal DERs allocation and system resiliency evaluation through data driven analysis approach in a distribution network.


翻译:我们提出一种方法,用于在活跃的配电网络中确定具有脆弱节点识别特征的最佳配发区分配,并将这些节点命名为关键节点。这些关键节点的功率变化将大大影响其他连接节点的运行,因此这些节点是适合的,被认为是最适合DER的设置。我们在标准IEEE-123测试支线系统中展示了我们的方法评价。我们最初使用图形理论将配送系统分割成最佳微型网网点网络。利用图形神经网络结构对分区进行了验证,以适当形成微型电网。此外,利用有效的可测量因果分析,如颗粒因果分析,我们查明了分布式微型电网的关键节点,并在这些节点上安置了DERS的关键节点,从而提高了网络的可靠性和复原力。此外,为了验证系统性能和能源弹性,我们计算了微型网网网网网的连接阈值,以显示在这些关键节点上安装了DERS后系统是否具有弹性。为第一个提议的方法是通过在分布网络中的数据驱动分析确保有效的微网点分割、确定关键节点、优化的DERS分配和系统弹性评估,从而确保有效的微网点分配和系统弹性分配。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员