Fitting a theoretical model to experimental data in a Bayesian manner using Markov chain Monte Carlo typically requires one to evaluate the model thousands (or millions) of times. When the model is a slow-to-compute physics simulation, Bayesian model fitting becomes infeasible. To remedy this, a second statistical model that predicts the simulation output -- an "emulator" -- can be used in lieu of the full simulation during model fitting. A typical emulator of choice is the Gaussian process (GP), a flexible, non-linear model that provides both a predictive mean and variance at each input point. Gaussian process regression works well for small amounts of training data ($n < 10^3$), but becomes slow to train and use for prediction when the data set size becomes large. Various methods can be used to speed up the Gaussian process in the medium-to-large data set regime ($n > 10^5$), trading away predictive accuracy for drastically reduced runtime. This work examines the accuracy-runtime trade-off of several approximate Gaussian process models -- the sparse variational GP, stochastic variational GP, and deep kernel learned GP -- when emulating the predictions of density functional theory (DFT) models. Additionally, we use the emulators to calibrate, in a Bayesian manner, the DFT model parameters using observed data, resolving the computational barrier imposed by the data set size, and compare calibration results to previous work. The utility of these calibrated DFT models is to make predictions, based on observed data, about the properties of experimentally unobserved nuclides of interest e.g. super-heavy nuclei.
翻译:使用 Markov 链 Monte Carlo 以巴伊西亚方式将理论模型适用于实验数据, 使用 Markov 链 Monte Carlo 通常需要一个模型来评估模型千次( 或百万次) 。 当模型是一个缓慢的物理模拟时, 巴伊西亚模型的安装变得不可行。 要解决这个问题, 可以使用第二个统计模型来预测模拟输出( “ 模拟器” ), 而不是模型安装期间的全面模拟。 一个典型的模拟器是高萨进程( GP), 一个灵活、非线性参数模型, 提供每个输入点的预测平均值和差异。 高萨进程回归对于少量的培训数据效果效果很好( < 10美3美元), 但是当数据设置大小变大时, 可以用多种方法来加速模拟输出模型进程( 大于 10美 5 美元 ), 将预测结果转换为大幅降低的运行时间。 这项工作考察了几个近似的GOB 、 轨道模型的精确交易过程( 将数据转换成 离GGP ) 的轨道模型, 将数据转换成 。