Single-image 3D human reconstruction aims to reconstruct the 3D textured surface of the human body given a single image. While implicit function-based methods recently achieved reasonable reconstruction performance, they still bear limitations showing degraded quality in both surface geometry and texture from an unobserved view. In response, to generate a realistic textured surface, we propose ReFu, a coarse-to-fine approach that refines the projected backside view image and fuses the refined image to predict the final human body. To suppress the diffused occupancy that causes noise in projection images and reconstructed meshes, we propose to train occupancy probability by simultaneously utilizing 2D and 3D supervisions with occupancy-based volume rendering. We also introduce a refinement architecture that generates detail-preserving backside-view images with front-to-back warping. Extensive experiments demonstrate that our method achieves state-of-the-art performance in 3D human reconstruction from a single image, showing enhanced geometry and texture quality from an unobserved view.
翻译:单一图像 3D 人类重建旨在重建人体的3D纹理表面, 给一个图像。 虽然基于功能的隐含方法最近取得了合理的重建性能, 但它们仍然受到种种限制, 显示表面几何和从未观测到的纹理都质量下降。 作为回应, 为了产生一个现实的纹理表面, 我们提议 ReFu, 这是一种粗略到细微的方法, 改进预测的背面图像, 并结合精细的图像, 以预测最终的人体。 为了抑制在投影图像中引起噪音的分散占用, 并重建 meshes, 我们提议通过同时使用基于占用量的 2D 和 3D 监督来培训占用概率 。 我们还引入一个改进结构, 用前对后扭曲生成详细保存后视图像。 广泛的实验表明, 我们的方法在3D 人类重建中从一个图像获得最新性表现, 从一个未观测到的图像显示强化的几何和纹理质量 。