Various datasets have been proposed for simultaneous localization and mapping (SLAM) and related problems. Existing datasets often include small environments, have incomplete ground truth, or lack important sensor data, such as depth and infrared images. We propose an easy-to-use framework for acquiring building-scale 3D reconstruction using a consumer depth camera. Unlike complex and expensive acquisition setups, our system enables crowd-sourcing, which can greatly benefit data-hungry algorithms. Compared to similar systems, we utilize raw depth maps for odometry computation and loop closure refinement which results in better reconstructions. We acquire a building-scale 3D dataset (BS3D) and demonstrate its value by training an improved monocular depth estimation model. As a unique experiment, we benchmark visual-inertial odometry methods using both color and active infrared images.
翻译:为了同时进行本地化和绘图(SLAM)及相关问题,提出了各种数据集,现有的数据集往往包括小环境,地面真实性不完全,或缺少重要的传感器数据,如深度和红外图像。我们提出了一个便于使用的框架,以便利用消费者深度摄像头获得建筑规模的3D重建。与复杂和昂贵的购置装置不同,我们的系统使众包能够大大有利于数据饥饿算法。与类似的系统相比,我们使用原始深度地图来进行odo测量计算和循环闭合改进,从而导致更好的重建。我们获得了一个建筑规模的3D数据集(BS3D),并通过培训改进的单层深度估计模型来展示其价值。作为一个独特的实验,我们用彩色和活跃红外图像来基准视觉-内皮odolog方法。