A popular way to estimate the parameters of a hidden Markov model (HMM) is direct numerical maximization (DNM) of the (log-)likelihood function. The advantages of employing the TMB (Kris- tensen et al., 2016) framework in R for this purpose were illustrated recently Bacri et al. (2022). In this paper, we present extensions of these results in two directions. First, we present a practical way to obtain uncertainty estimates in form of confidence intervals (CIs) for the so-called smoothing probabilities at moderate computational and programming effort via TMB. Our approach thus permits to avoid computer-intensive bootstrap methods. By means of several ex- amples, we illustrate patterns present for the derived CIs. Secondly, we investigate the performance of popular optimizers available in R when estimating HMMs via DNM. Hereby, our focus lies on the potential benefits of employing TMB. Investigated criteria via a number of simulation studies are convergence speed, accuracy, and the impact of (poor) initial values. Our findings suggest that all optimizers considered benefit in terms of speed from using the gradient supplied by TMB. When supplying both gradient and Hessian from TMB, the number of iterations reduces, suggesting a more efficient convergence to the maximum of the log-likelihood. Last, we briefly point out potential advantages of a hybrid approach.
翻译:在本文中,我们从两个方向展示了这些结果的延伸。首先,我们提出了一个实际方法,以信任期(CIs)的形式获得所谓的中度计算和编程(log-signn et al.,2016)功能参数的不确定性估计(DNM),从而可以避免计算机密集型靴套方法。我们通过一些前充裕方法,展示了为此在R(TMB(Kris-sirn et al.,2016)框架中使用TMB(Kris-sirden et al.,2016)框架的优势。最近,Bacri等人等人(2022年)展示了这方面的优势。在本文件中,我们从两个方向展示了这些成果的扩展。我们用TMB(TMB)进行估算的潜在好处。通过一些模拟研究,调查的标准是:趋同速度、准确性和(贫穷)初始价值的影响。我们的研究结果表明,所有优化者都认为,在使用高密度的梯度方法的速度方面,从TMB(我们提供的梯度优势到MB(TMB)的最大速度,在提供最后的梯度和MB(Helementl)的潜力都降低了。