Though chatbots based on large neural models can often produce fluent responses in open domain conversations, one salient error type is contradiction or inconsistency with the preceding conversation turns. Previous work has treated contradiction detection in bot responses as a task similar to natural language inference, e.g., detect the contradiction between a pair of bot utterances. However, utterances in conversations may contain co-references or ellipsis, and using these utterances as is may not always be sufficient for identifying contradictions. This work aims to improve the contradiction detection via rewriting all bot utterances to restore antecedents and ellipsis. We curated a new dataset for utterance rewriting and built a rewriting model on it. We empirically demonstrate that this model can produce satisfactory rewrites to make bot utterances more complete. Furthermore, using rewritten utterances improves contradiction detection performance significantly, e.g., the AUPR and joint accuracy scores (detecting contradiction along with evidence) increase by 6.5% and 4.5% (absolute increase), respectively.
翻译:尽管基于大型神经模型的聊天机通常可以在开放域域对话中产生流畅的响应,但一个明显的错误类型与先前的谈话转弯是矛盾或不一致的。 先前的工作将机器人反应中的矛盾检测视为类似于自然语言推断的一种任务, 例如,发现一对机器人话之间的矛盾。 但是, 谈话中的言论可能包含共同参照或省略, 并且使用这些话语可能并不总是足以识别矛盾。 这项工作旨在通过重新撰写所有机器人的言论来恢复先兆和离子体, 来改进矛盾检测。 我们为发音重写制作了一个新的数据集, 并建立了重写模型。 我们实验性地证明, 这个模型可以产生令人满意的重写, 使机器人的发音更加完整。 此外, 使用重写的语句可以大大改善矛盾检测性表现, 例如, AUPR 和联合准确分数( 与证据的矛盾) 分别增加6.5% 和 4.5 % ( 绝对增加 ) 。