In supervised learning for image denoising, usually the paired clean images and noisy images are collected or synthesised to train a denoising model. L2 norm loss or other distance functions are used as the objective function for training. It often leads to an over-smooth result with less image details. In this paper, we regard the denoising task as a problem of estimating the posterior distribution of clean images conditioned on noisy images. We apply the idea of diffusion model to realize generative image denoising. According to the noise model in denoising tasks, we redefine the diffusion process such that it is different from the original one. Hence, the sampling of the posterior distribution is a reverse process of dozens of steps from the noisy image. We consider three types of noise model, Gaussian, Gamma and Poisson noise. With the guarantee of theory, we derive a unified strategy for model training. Our method is verified through experiments on three types of noise models and achieves excellent performance.


翻译:在有监督的图像脱色学习中,通常收集或合成对齐的干净图像和吵闹图像,以训练脱色模型。L2规范丢失或其他距离功能被用作培训的客观功能,往往导致过度悬浮的结果,但图像细节较少。在本文中,我们认为脱色任务是一个估算以噪音图像为条件的清洁图像的后传问题。我们运用传播模型的理念实现基因化图像脱色。根据脱色任务的噪音模型,我们重新定义了扩散过程,使之与原来的过程不同。因此,对外传图像分布的取样是来自噪音图像几十步的反向过程。我们考虑三种噪音模型,即高山、伽马和普瓦森噪音。在理论的保证下,我们得出一个统一的模型培训战略。我们的方法通过对三种类型的噪音模型的实验加以验证,并取得极好的性能。

0
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2023年3月28日
Arxiv
44+阅读 · 2022年9月6日
Arxiv
12+阅读 · 2020年8月3日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员