Machine learning (ML) has become an important paradigm for cyberthreat detection (CTD) in the recent years. A substantial research effort has been invested in the development of specialized algorithms for CTD tasks. From the operational perspective, however, the progress of ML-based CTD is hindered by the difficulty in obtaining the large sets of labelled data to train ML detectors. A potential solution to this problem are semisupervised learning (SsL) methods, which combine small labelled datasets with large amounts of unlabelled data. This paper is aimed at systematization of existing work on SsL for CTD and, in particular, on understanding the utility of unlabelled data in such systems. To this end, we analyze the cost of labelling in various CTD tasks and develop a formal cost model for SsL in this context. Building on this foundation, we formalize a set of requirements for evaluation of SsL methods, which elucidates the contribution of unlabelled data. We review the state-of-the-art and observe that no previous work meets such requirements. To address this problem, we propose a framework for assessing the benefits of unlabelled data in SsL. We showcase an application of this framework by performing the first benchmark evaluation that highlights the tradeoffs of 9 existing SsL methods on 9 public datasets. Our findings verify that, in some cases, unlabelled data provides a small, but statistically significant, performance gain. This paper highlights that SsL in CTD has a lot of room for improvement, which should stimulate future research in this field.


翻译:近些年来,机器学习(ML)已成为网络威胁探测(CTD)的一个重要范例。在为CTD任务开发专门算法方面已经投入了大量的研究努力。然而,从业务的角度来看,基于ML的CTD的进展由于难以获得用于培训ML探测器的大批贴标签数据而受阻。这个问题的潜在解决办法是半监督的学习方法(SL),这种方法将小型标签数据集与大量未贴标签的数据结合起来。本文旨在系统化现有的CTDSL工作,特别是了解这类系统中未贴标签数据的效用。为此,我们分析以ML为基础的CTD各项任务贴标签的成本,并在此背景下为SL开发一个正式的成本模型。在此基础上,我们正式确定一套SL方法的评价要求,其中阐明了未贴标签数据的贡献。我们审查了目前的工作状况,但发现以前没有达到这种要求。为解决这一问题,我们提出了一个框架,用于评估未贴标签的SL数据绩效评估的一些重要成本。我们用SL标准在SL数据库中展示了这一没有标定标准的数据。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
20+阅读 · 2020年6月8日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员