The detection of anomalous behaviours is an emerging need in many applications, particularly in contexts where security and reliability are critical aspects. While the definition of anomaly strictly depends on the domain framework, it is often impractical or too time consuming to obtain a fully labelled dataset. The use of unsupervised models to overcome the lack of labels often fails to catch domain specific anomalies as they rely on general definitions of outlier. This paper suggests a new active learning based approach, ALIF, to solve this problem by reducing the number of required labels and tuning the detector towards the definition of anomaly provided by the user. The proposed approach is particularly appealing in the presence of a Decision Support System (DSS), a case that is increasingly popular in real-world scenarios. While it is common that DSS embedded with anomaly detection capabilities rely on unsupervised models, they don't have a way to improve their performance: ALIF is able to enhance the capabilities of DSS by exploiting the user feedback during common operations. ALIF is a lightweight modification of the popular Isolation Forest that proved superior performances with respect to other state-of-art algorithms in a multitude of real anomaly detection datasets.


翻译:在许多应用中,特别是在安全和可靠性是关键方面的情况下,发现异常行为是新出现的需要,在很多应用中,特别是在安全和可靠性是关键方面的情况下,发现异常现象是新出现的需要。虽然异常现象的定义严格取决于域框架,但往往不切实际,或过于耗时,以获得贴上完整标签的数据集。使用未经监督的模型来克服缺乏标签的问题,往往无法捕捉依赖外部异常的一般性定义的域别特定异常现象。本文建议一种基于积极学习的新方法,即ALIF,通过减少所需标签的数量,调整检测器以适应用户提供的异常点定义来解决这一问题。 拟议的方法在决策支持系统(DSS)的出现时特别吸引人。 在现实世界情形中,这种情况越来越普遍的情况是,带有异常检测能力的DSS往往依赖未经监督的模式,但它们没有办法改进它们的业绩。 ALIF在共同操作中利用用户的反馈,能够提高DSS的能力。ALIF对流行的隔离森林作了轻量的修改,证明在大量实际异常现象探测数据设置中,其表现优于其他状态的算法。

0
下载
关闭预览

相关内容

决策支持系统(Decision Support Systems)期刊中发表的文章的共同主线是它们与支持增强决策制定的理论和技术问题的相关性。所涉及的领域可能包括基础、功能、接口、实现、影响和决策支持系统(DSS)的评估。手稿可以从不同的方法和方法学中获得,包括决策理论、经济学、计量经济学、统计学、计算机支持的协作工作、数据库管理、语言学、管理科学、数学建模、运营管理、认知科学、心理学、用户界面管理等。但是,一份侧重于对任何这些相关领域的直接贡献的手稿应提交给适合于特定领域的机构。 官网地址:http://dblp.uni-trier.de/db/journals/dss/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月28日
Arxiv
0+阅读 · 2022年8月26日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
16+阅读 · 2021年3月2日
Anomalous Instance Detection in Deep Learning: A Survey
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员