Motivated by online recommendation systems, we study a family of random forests. The vertices of the forest are labeled by integers. Each non-positive integer $i\le 0$ is the root of a tree. Vertices labeled by positive integers $n \ge 1$ are attached sequentially such that the parent of vertex $n$ is $n-Z_n$, where the $Z_n$ are i.i.d.\ random variables taking values in $\mathbb N$. We study several characteristics of the resulting random forest. In particular, we establish bounds for the expected tree sizes, the number of trees in the forest, the number of leaves, the maximum degree, and the height of the forest. We show that for all distributions of the $Z_n$, the forest contains at most one infinite tree, almost surely. If ${\mathbb E} Z_n < \infty$, then there is a unique infinite tree and the total size of the remaining trees is finite, with finite expected value if ${\mathbb E}Z_n^2 < \infty$. If ${\mathbb E} Z_n = \infty$ then almost surely all trees are finite.


翻译:我们通过在线建议系统研究随机森林的组合。 森林的顶端以整数标注。 每个非正整整数$le 0 美元是树根。 以正正整数为标签的顶端依次附在正整数 $\ ge 1 美元上, 因此顶顶数的母体是 $n- ⁇ n 美元, 美元是 i. d.\ 随机变量, 以美元计值。 我们研究由此形成的森林的若干特征。 特别是, 我们为预期的树木大小、 森林树木数量、 树叶数量、 最大程度和森林的高度设定了界限。 我们显示, 对于正整数美元的所有分布, 森林含有最多一棵无限的树, 几乎可以肯定。 如果 $_ mathbb E}n < i. d. d.\ 随机变量以美元计值计值, 那么剩下的树木的总数是独一无二的, 如果 $xmab $ En2, 那么n\\ fin 树是固定的。

0
下载
关闭预览

相关内容

随机森林 指的是利用多棵树对样本进行训练并预测的一种分类器。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月30日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员