Random order online contention resolution schemes (ROCRS) are structured online rounding algorithms with numerous applications and links to other well-known online selection problems, like the matroid secretary conjecture. We are interested in ROCRS subject to a matroid constraint, which is among the most studied constraint families. Previous ROCRS required to know upfront the full fractional point to be rounded as well as the matroid. It is unclear to what extent this is necessary. Fu, Lu, Tang, Turkieltaub, Wu, Wu, and Zhang (SOSA 2022) shed some light on this question by proving that no strong (constant-selectable) online or even offline contention resolution scheme exists if the fractional point is unknown, not even for graphic matroids. In contrast, we show, in a setting with slightly more knowledge and where the fractional point reveals one by one, that there is hope to obtain strong ROCRS by providing a simple constant-selectable ROCRS for graphic matroids that only requires to know the size of the ground set in advance. Moreover, our procedure holds in the more general adversarial order with a sample setting, where, after sampling a random constant fraction of the elements, all remaining (non-sampled) elements may come in adversarial order.


翻译:随机命令在线争议解答方案(ROCRS)是结构化的在线四舍五入算法(ROCRS),它有许多应用程序,与其他众所周知的在线选择问题有链接,如机器人秘书猜想。我们感兴趣的是,受机器人约束的ROCRS系统,这是研究最多的制约家庭之一。以前的ROCRS系统需要先了解要四舍五入的完整分点以及机器人。尚不清楚这在多大程度上是必要的。 Fu、Lu、Tang、Turkieltaub、Wu、Wu、Wu和Zhang(SOSA 2022)对这个问题做了一些说明,证明如果分数点未知(可选择的)网上甚至离线争议解决方案不存在,即使图形类固醇也不存在。相比之下,我们显示,在一个知识稍多一点的环境下,分数点显示一个分数点显示一个分数的分数点显示,希望获得强大的ROCRS系统,方法是为图形型模提供简单、可选择的ROCRS系统,而只需要知道预先设定的地面大小。此外,我们的程序在较普通的基数点的基数点之后,可能保持一个不固定的基数位的基数的基数序列。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月31日
Arxiv
0+阅读 · 2023年1月31日
Arxiv
0+阅读 · 2023年1月30日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员