The Herman Protocol Conjecture states that the expected time $\mathbb{E}(\mathbf{T})$ of Herman's self-stabilizing algorithm in a system consisting of $N$ identical processes organized in a ring holding several tokens is at most $\frac{4}{27}N^{2}$. We prove the conjecture in its standard unbiased and also in a biased form for discrete processes, and extend the result to further variants where the tokens move via certain L\'evy processes. Moreover, we derive a bound on the expected value of $\mathbb{E}(\alpha^{\mathbf{T}})$ for all $1\leq \alpha\leq (1-\varepsilon)^{-1}$ with a specific $\varepsilon>0$. Subject to the correctness of an optimization result that can be demonstrated empirically, all these estimations attain their maximum on the initial state with three tokens distributed equidistantly on the ring of $N$ processes. Such a relation is the symptom of the fact that both $\mathbb{E}(\mathbf{T})$ and $\mathbb{E}(\alpha^{\mathbf{T}})$ are weighted sums of the probabilities $\mathbb{P}(\mathbf{T}\geq t)$.
翻译:Herman 协议的洞测显示, Herman 在由美元相同的进程组成的系统中, 由持有数个符号的环状系统中, 由美元组成的一个系统, 赫曼的自我稳定算法的预期值 $mathb{{E} (mathbf{T}) $ 。 我们用一个特定的 $\ frac{4\\\\ 27}\\\\\\\\\\\\ 美元来证明其标准无偏差的推测值, 并且对离散进程也有偏差的形式, 并将结果扩展到通过某些 L\ 进程移动标牌的更多变体中。 此外, 我们从一个由$mathb{Eleqq\\ b} 等值组成的系统中, 以 $xxxb} tmath_\\ b===ab===xxxxxxxxxx======xxxxxxxx====xxxxxxxx=xxxxxxxxxxxx==xxxxxxxxx=xxxxxxxxx=xxxxxxxxxxxxxxxxxx===xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx=====xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx