Parametric autoregressive moving average models with exogenous terms (ARMAX) have been widely used in the literature. Usually, these models consider a conditional mean or median dynamics, which limits the analysis. In this paper, we introduce a class of quantile ARMAX models based on log-symmetric distributions. This class is indexed by quantile and dispersion parameters. It not only accommodates the possibility to model bimodal and/or light/heavy-tailed distributed data but also accommodates heteroscedasticity. We estimate the model parameters by using the conditional maximum likelihood method. Furthermore, we carry out an extensive Monte Carlo simulation study to evaluate the performance of the proposed models and the estimation method in retrieving the true parameter values. Finally, the proposed class of models and the estimation method are applied to a dataset on the competition "M5 Forecasting - Accuracy" that corresponds to the daily sales history of several Walmart products. The results indicate that the proposed log-symmetric quantile ARMAX models have good performance in terms of model fitting and forecasting.
翻译:文献中广泛使用了带有外在术语(ARMAX)的自动递减平均模型(ARMAX),这些模型通常考虑一种有条件的中值或中位动态,限制分析。在本文中,我们引入了一组基于日志对称分布的四分位的ARMAX模型。该类别按四分位和分散参数编制索引。它不仅顾及了模拟双向和/或光/重尾分布数据的可能性,而且顾及了混血性。我们使用有条件的最大可能性方法估计了模型参数。此外,我们进行了广泛的蒙特卡洛模拟研究,以评估拟议模型的性能和估计方法在检索真实参数值方面的性能。最后,拟议的模型类别和估计方法应用于竞争“M5预测-准确性”的数据集,该数据集与若干沃尔玛产品的每日销售历史相对应。结果显示,拟议的对数定量的ARMAX模型在模型的匹配和预测方面表现良好。