We introduce a self-censoring model for multivariate nonignorable nonmonotone missing data, where the missingness process of each outcome is affected by its own value and is associated with missingness indicators of other outcomes, while conditionally independent of the other outcomes. The self-censoring model complements previous graphical approaches for the analysis of multivariate nonignorable missing data. It is identified under a completeness condition stating that any variability in one outcome can be captured by variability in the other outcomes among complete cases. For estimation, we propose a suite of semiparametric estimators including doubly robust estimators that deliver valid inferences under partial misspecification of the full-data distribution. We evaluate the performance of the proposed estimators with simulations and apply them to analyze a study about the effect of highly active antiretroviral therapy on preterm delivery of HIV-positive mothers.
翻译:我们引入了多变、不可忽略、不可忽略、不可忽略的数据的自我审查模式,其中每项结果的缺失过程受其自身价值的影响,与其他结果的缺失指标相关,但有条件地独立于其他结果。自我审查模式补充了先前用于分析多变、不可忽略的缺失数据的图形方法,在完整性条件下确定,说明一个结果的任何变异都可以通过其他结果的变异性在完整情况下得到。为估算起见,我们提议了一套半参数估计器,包括一套双倍有力的估计器,在数据全文分布部分不精确的情况下提供有效的推断。我们用模拟评估了拟议的估算器的性能,并运用这些模型分析关于高度活跃的抗逆转录病毒疗法对艾滋病毒抗体阳性母亲的期前期交付的影响的研究。