Enabling fast and accurate physical simulations with data has become an important area of computational physics to aid in inverse problems, design-optimization, uncertainty quantification, and other various decision-making applications. This paper presents a data-driven framework for parametric latent space dynamics identification procedure that enables fast and accurate simulations. The parametric model is achieved by building a set of local latent space model and designing an interaction among them. An individual local latent space dynamics model achieves accurate solution in a trust region. By letting the set of trust region to cover the whole parameter space, our model shows an increase in accuracy with an increase in training data. We introduce two different types of interaction mechanisms, i.e., point-wise and region-based approach. Both linear and nonlinear data compression techniques are used. We illustrate the framework of Latent Space Dynamics Identification (LaSDI) enable a fast and accurate solution process on various partial differential equations, i.e., Burgers' equations, radial advection problem, and nonlinear heat conduction problem, achieving $O(100)$x speed-up and $O(1)\%$ relative error with respect to the corresponding full order models.
翻译:借助数据进行快速和准确的物理模拟已成为一个重要的计算物理学领域,有助于反向问题、设计优化、不确定性量化和其他各种决策应用。本文件介绍了一个数据驱动框架,用于对准潜在空间动态识别程序,以便能够进行快速和准确的模拟。参数模型是通过建立一套本地潜伏空间模型和设计它们之间的互动来实现的。一个地方单个潜伏空间动态模型在一个信任区域实现了准确的解决方案。通过让一套信任区域覆盖整个参数空间,我们的模型显示精确度随着培训数据的增加而提高。我们采用了两种不同类型的互动机制,即点对准和基于区域的方法。使用了线性和非线性数据压缩技术。我们举例说明了冷冻空间动态识别(LaSDI)框架,使各种部分差异方程式(即Burgerers方程式、radaladvection问题和非线性热操控)的快速和准确的解决方案进程得以实现$O(100美元)的加速度和$O(1美元)的相对错误,与全顺序对应的模型相对错误。