The microstructure is an essential part of materials, storing the genes of materials and having a decisive influence on materials' physical and chemical properties. The material genetic engineering program aims to establish the relationship between material composition/process, organization, and performance to realize the reverse design of materials, thereby accelerating the research and development of new materials. However, tissue analysis methods of materials science, such as metallographic analysis, XRD analysis, and EBSD analysis, cannot directly establish a complete quantitative relationship between tissue structure and performance. Therefore, this paper proposes a novel data-knowledge-driven organization representation and performance prediction method to obtain a quantitative structure-performance relationship. First, a knowledge graph based on EBSD is constructed to describe the material's mesoscopic microstructure. Then a graph representation learning network based on graph attention is constructed, and the EBSD organizational knowledge graph is input into the network to obtain graph-level feature embedding. Finally, the graph-level feature embedding is input to a graph feature mapping network to obtain the material's mechanical properties. The experimental results show that our method is superior to traditional machine learning and machine vision methods.


翻译:材料遗传工程方案旨在建立材料组成/过程、组织和性能之间的关系,以实现材料的反向设计,从而加速新材料的研究和开发;然而,材料科学的组织分析方法,如美学分析、XRD分析、以及EBSD分析等,不能直接建立组织结构与性能之间的完整的定量关系。因此,本文件建议采用新的数据-知识驱动的组织代表性和性能预测方法,以获得定量结构-性能关系。首先,根据EBSD构建了一个知识图表,以描述材料的中层微结构。随后,建立了一个基于图示注意的图示学习网络,而EBSD组织知识图则成为网络的投入,以获得图层特征嵌入。最后,图层特性嵌入是一个图形特征制图网络,以获得材料的机械特性。实验结果表明,我们的方法优于传统的机器学习和机器视觉方法。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2019年3月26日
VIP会员
相关资讯
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员